High performance anode-supported tubular solid oxide fuel cells fabricated by a novel slurry-casting method
نویسندگان
چکیده
Tubular solid oxide fuel cells were fabricated and evaluated for their microstructure and electrochemical performance. The tubular substrate was prepared by casting NiO-Y2O3 stabilized ZrO2 (YSZ) slurry on the inner wall of a plastic mold (tube). The wall thickness and uniformity were controlled by slurry viscosity and rotation speed of the tube. The cells consisted of Ni-YSZ functional anode, YSZ electrolyte and (La0.8Sr0.2)0.95MnO(3-δ) (LSM)-YSZ cathode prepared in sequence on the substrate by dip-coating and sintering. Their dimension was 50 mm in length, 0.8 mm in thickness and 10.5 mm in outside diameter. The peak power density of the cell at temperatures between 650 and 850°C was in the range from 85 to 522 mW cm(-2) and was greatly enhanced to the range from 308 to 1220 mW cm(-2) by impregnating PdO into LSM-YSZ cathode. During a cell testing at 0.7 A cm(-2) and 750°C for 282 h, the impregnated PdO particles grew by coalescence, which increased the cathode polarization resistance and so that decreased the cell performance. According to the degradation tendency, the cell performance will be stabilized in a longer run.
منابع مشابه
Three-dimensional modeling of transport phenomena in a planar anode-supported solid oxide fuel cell
In this article three dimensional modeling of a planar solid oxide fuel cell (SOFC) was investigated. The main objective was to attain the optimized cell operation. SOFC operation simulation involves a large number of parameters, complicated equations, (mostly partial differential equations), and a sophisticated simulation technique; hence, a finite element method (FEM) multiphysics approach ...
متن کاملThe Effect of Process Parameters on the Apparent Defects of Tape-Cast SOFC Half-Cell
Using flawless components are important for a proper material selection and best working conditions to achieve the best performance of solid oxide fuel cells (SOFCs). Tape casting is the most used process for the fabrication of SOFC parts, especially anode and electrolyte due to its advantages regarding the other processes. In this study, the effect of slurry composition and milling time were s...
متن کاملDynamic Response Analysis of the Planar and Tubular Solid Oxide Fuel Cells to the Inlet Air Mass Flow Rate Variation
The purpose of present study is to investigate the dynamic response of two conventional types of solid oxide fuel cells to the inlet air mass flow rate variation. A dynamic compartmental model based on CFD principles is developed for two typical planar and tubular SOFC designs. The model accounts for transport processes (heat and mass transfer), diffusion processes, electrochemical processes, a...
متن کاملStructure Formation in Anode and Its Effect on the Performance of Micro-Tubular SOFC: A Brief Review
Anode-supported micro-tubular solid oxide fuel cell (SOFC) offers many advantages over the electrolyte and cathode-supported confgurations in terms of simplicity, reliability, and efciency. In such design, the anode substrates should possess a highly porous structure, provide active sites reaction as well as serving good mechanical strength. This structure is desired to ...
متن کاملNanostructuring Platinum Nanoparticles on Ni/Ce0.8Gd0.2O2-δ Anode for Low Temperature Solid Oxide Fuel Cell via Single-step Infiltration: A Case Study
With the aim of promoting the Ni/Ce0.8Gd0.2O2-δ (Ni/GDC20) cermet anodic performance of low temperature solid oxide fuel cell (LT-SOFC) [1], nanostructuring platinum nanoparticles on NiO/GDC composite was done by single-step wet-infiltration of hexachloroplatinic acid hexahydrate (H2PtCl6.6H2O) precursor on NiO/GDC20 composite. The anodic polarization resistance was measured using symmetr...
متن کامل